Fin MacDonald

Information on me and my current projects

Tag Archives: Fin MacDonald

New job with ThermalWise and The NSYCC!

Today I accepted a new position with a company called Thermalwise that is funded through the Nova Scotia Youth Conservation Corps (NSYCC). The NSYCC provides employment and training to youth aged 17-30 in Nova Scotia in the field of environmental sustainability. They teamed up with ThermalWise to create two job positions doing green building research. ThermalWise is dedicated to helping reduce the impact of Atlantic Canadians on the environment by promoting and facilitating green building initiatives. They provide green building assessment, certification, consulting and education services to homeowners, building owners, developers and the general public.

My tasks will include:

• Highlighting entries in the database of green building products that are made in Nova Scotia.
• Maintaining the databases of green building products available in Canada, as well as community groups, businesses and government departments that provide green building related services.
• Creating a series of case studies highlighting innovative green building practices in both new and retrofit applications. Case studies will showcase not only the techniques but also the people involved. This will include interviewing these people.
• Creating a series of videos about green building projects in Nova Scotia.
• Developing a mechanism for the public to submit examples of the steps they’re taking in their own homes to improve energy efficiency.
• Organize and upload information to the website and update website through the summer.
• Maintain a blog on the project site that highlights the crews work and progress.

I am really excited for this position and I start on Monday June 27th.

          

Advertisement

NSCC Waterfront Solar Monitoring (Part 2)

The solar thermal monitoring project is moving along despite a couple of setbacks. We received the wireless equipment in the mail and were able to set up the wireless bridge to the schools wireless network. We used a directional antenna to improve the reception because the school’s wireless signal on the roof is weak.

We put a 12V deep cycle battery on the roof and we did a test run. It was able to power both the router and the Web Energy Logger (WEL). The battery is rated at 90 amp hours and the load for both the WEL and router is 0.4 amps combined. This means we are able to get over 3 months of power off the battery before we will need to swap it out for charging. This is good news because the battery is very heavy!

Testing with the pyranometer hit a bit of a wall initially. As I mentioned in my previous post the pyranometer measures the solar intensity in watts per meter squared. Since we are converting the 0-5V signal on the pyranometer to a 4-20 mA (milliamp) signal for the WEL we needed to scale the results. We did the math calculation and did a test run. We weren’t getting to the proper numbers in the upper ranges. Once we were confident the math was correct we tried numerous 4-20 mA devices with the WEL and had the same result. It really pays to have an electrical engineering student around when you are trying to troubleshoot electrical problems. Travis Keeping is our electrical expert at the lab and he a bunch of tests for us. In the end a call to Phil Malone from OurCoolHouse.com who designed the WEL was all it took to discover our problem. Turns out that the WEL has a defect and there are two zener diodes that we will need to snip out of the circuit and it should work fine after that. Phil also told us that new versions of the WEL will have a voltage port so we won’t need to convert the signal in the future. We have another WEL on order and it will have the voltage connection on it.

The wire we chose for the sensor wire run was cheap wire and it started giving us grief. We used a 75m run and it had too much resistance because it wasn’t twisted pair wire. Twisted pair wire helps to reduce the electrical noise on the signal. We started getting “shorted bus” errors on the WEL. I took the wire run down and we will be replacing it with CAT 5 wire, which is what is used for computer network cables. Once the new wire is installed we should be able to go live.

Empowered Partnership – Success Magazine 2011

Each year NSCC puts out Success Magazine to publicize recent projects among students and staff. This year a project involving our lab was selected for printing! Dr. Alain Joseph who heads the Applied Energy Research Lab obtained a grant through NSERC (Natural Sciences and Engineering Council of Canada) to work to improve the performance of solar energy systems in Atlantic Canada. Dr. Joseph hired 8 students to help with the project over the course of the year. Travis Keeping from the Electrical Engineering Technology program and his instructor Gord Wilkie helped design a Programmable Logic Controller (PLC) to monitor solar hot water. The monitoring system was deployed in industry and will provide clues to the availability of solar energy in our climate. Since I came on late in the project my work involved examining low cost alternatives to the PLC system. My work using the Web Energy Logger (WEL) was based around trying to provide the same information as the PLC system. I believe it is important to have low cost alternatives because not every system is big enough to warrant the expense of PLCs which can be in the range of thousands of dollars. We are currently deploying both a PLC system and a low cost WEL on the solar equipment on the roof of the Waterfront Campus.

I have attached a scan of the article here.

NSCC Waterfront Solar Monitoring (Part 1)

We are working on an electronic monitoring system for the solar thermal gear on the roof of the NSCC Waterfront Campus. The roof has 2 arrays of Thermodynamics flat plate collectors as well as 2 arrays of Thermomax evacuated tube collectors. We will be monitoring the glycol temperatures, outside air temperature, and solar radiation. The data logging will be done using the Web Energy Logger (WEL) over the Wel Server. I have installed the temperature sensors and programmed the logic for the calculations inside the WEL. We are interested in adding flow meters to this project if we can find ones within our price range and get permission from facilities management to install them.

The challenge with working on the roof is that there isn’t power or wired network access. The campus has a very weak wireless signal on the roof and I will be connecting the WEL to the internet that way by using a wireless bridging router. The router runs off 12V and the WEL can also run off of 12V. For now I will power the entire setup off of a large deep cycle battery and it will need to be changed and charged from time to time. NSCC Applied Research may add a photovoltaic panel to the roof to power the equipment and charge the battery at a later time.

This project is unique from the residential and commercial installs I have done in the past because it will be used primarily for research. An electronics student at the college was able to design us a voltage to milliamp converting circuit board that will allow us to connect a pyranometer with a voltage output to the 4-20 mA input on the WEL. By using a pyranometer and air temperature sensor I will be able to match the energy output to the solar radiation and determine the energy efficiency of the gear. I will also be able to do statistical analysis over time. The lab will be very interested in the variance of the different readings and how they relate to each other. By comparing sunny days in the winter to days with the same amount of solar radiation in the summer we will be able to determine the effect of outside air temperature on the output of the different types of collectors. This is of particular interest because our winters are cold but the sun is usually shining.

I will be posting more information as this project progresses.

20110606-035558.jpg

The Thermomax evacuated tube collectors are the dark blue tubes on the left of the roof. The Thermodynamics flat plat collectors are the small grey rectangular panels with the black border.

Web Energy Logger installation today

Today I installed a web energy logger on a solar thermal system in Halifax. The system is in a large multi-floor residential building. The entire process took about 3 hours, which is a new record for me. The solar data logging system installed has 5 temperature sensors and a current switch to detect if the pump is on. With this setup we are able to calculate the amount of energy that the solar panels are able to extract from the sun and supply to the glycol. The data logger will provide real time data once each minute as well as log the data to a .csv file for analysis at a later time. It connects to the WEL Server (www.welserver.com) to transmit the data over the internet.

The limitation of this data logging system configuration is that it is unable to calculate how much of that energy is actually transferred to the water. Since the solar system was already installed prior to the decision to add a data logger, it does not have electronic pulse flow meters. Flow meters connected to the data logger would allow for accurate calculations of the energy supplied to residents and the savings on the buildings power bill associated with that energy. The decision to go back and install pulse flow meters will rest with the building owner.

LEED Green Associate

Today I received my LEED Green Associate credential! I passed my exam on Friday and today the Green Building Certification Institute officially delivered my recognition. I am now allowed to use the LEED Green Associate title in my email signature and on business cards.

LEED stands for Leadership in Energy and Environmental Design. The Green Associate credential denotes a basic knowledge of green building practices and principles and LEED. I spent close to a month studying for the exam and was thrilled to pass on the first try.

LEED Green Associate represents the first tier of three available:
1) LEED Green Associate
2) LEED AP with specialty
3) LEED Fellow

My next goal will be to obtain the required LEED project experience to be eligible to write the LEED AP exam. I will probably specialize in Operations and Maintenance.